Posts Tagged ‘Terraforming’

Arthur C. Clarke Book on the Terraforming of Mars

March 18, 2017

Arthur C. Clarke – The Snows of Olympus: A Garden on Mars – The Illustrated History of Man’s Colonization of Mars (London: Victor Gollancz 1994).

A little while ago I put up a number of articles on the possible terraforming of various planets in our solar system. The prime candidate at the moment would be Mars, but people have also suggested ways to terraform Venus and the Moon. I’ve managed to dig out from my bookshelves a copy of Arthur C. Clarke’s book, The Snows of Olympus, which I bought way back in the 1990s. Clarke’s been called ‘The Space Prophet’ because of his article published in a radio hobbyists’ magazine shortly after the War predicting geostationary communications satellites. He has jokingly said in an article ‘How I Lost a Million Dollars in My Spare Time’ that he should have patented the concept, and so made himself a billionaire because of its immense value to the telecommunications industry. This book is no less prophetic in that it uses computer simulations to depict the gradual greening of the Red Planet over a thousand year period from the next few centuries to c. 3000.

The book has a prologue, in which Clarke gives the text of a speech he gave to future Martian colonists as part of the Planetary Society’s ‘Visions of Mars Project’. Launched by the late and much-missed astronomer and space visionary, Carl Sagan, this was a project to send the future colonists the gift of a collection of SF short stories about Mars aboard two probes due to land there. There’s then a short introduction in which Clarke lays out the aims of the book. The first chapter, ‘Prelude to Mars’, discusses the history of the exploration of the Red Planet by terrestrial astronomers and writers, such as Giovanni Schiaparelli, Percival Lowell, H.G. Wells and Edgar Rice Burroughs, C.S. Lewis in Out of the Silent Planet, and the controversy surrounding the supposed ‘face’ on Mars, made by Richard Hoagland and others.

Chapter 2 – ‘The Curtain Rises’ – is on the probes sent to explore Mars, such as the Mariner probes and discussion between himself, Sagan, Ray Bradbury and the JPL’s Bruce Murray at the Jet Propulsion Laboratory on the probes and their findings. He goes on to discuss Viking probes and the debate about American and Russian cooperative ventures in space research. This last ended for a time because of international tensions created by the Solidarity crisis in Poland.

Chapter 3 – ‘Going There’, describes the problems and suggested methods for reaching Mars, establishing crewed bases there, including various types of rocket from the conventional chemical to nuclear-thermal and atomic; solar sails and space elevators, George Bush seniors’ intention to launch a crewed mission to Mars by 2019, and the tasks that would immediately face the astronauts landing there.

Chapter 4- ‘Virtual Explorations’ is on the use of computers and VR to explore and map Mars, and particularly the Vistapro programme used in the generation of many of the images in the book.

Chapter 5 is on the artistic and computer depictions of Olympus Mons, the planet’s highest mountain and the gradual reclamation of its surface by vegetation, beginning with lichens, during the long centuries of terraforming. This culminates in the emergence of liquid water and creation of a sea surrounding the mountain.

Chapter 6 does the same for Eos Chasma, the ‘Chasm of the Dawn’, in the Valles Marineris.

Chapter 7 shows the same process as it would affect the Noctes Labyrinthes – the Labyrinth of Night. This forecasts the growth of forests in this part of Mars, beginning with pines but later including deciduous trees.

Chapter 8 – ‘The Longest Spring’ discusses the various methods that could be used to terraform Mars, such as coating the ice caps with carbon from Mars’ moon, Phobos, the use of orbiting mirrors to melt them, raising its temperature by turning Phobos into a miniature sun for about 40 days using ‘muon resonance’ – a form of nuclear reaction, and bombarding the planet with comets to cover it with water, and ‘Von Neumann’ machines that would gradually terraform the planet automatically.

‘Disneymars’ looks forward to a museum display and audiovisual presentation that would show the colonists what their planet would look like in the future as the terraforming progresses.

Chapter 9 – ‘Concerning Ends and Means’ discusses the moral dimension of terraforming, the immense historical importance of exploration and the need to continue this exploration to the Red Planet in order to preserve human civilisation and progress.

There are two appendices. The first is an extract from a speech, The Mars Project: Journeys beyond the Cold War, by US senator and WWII hero, Spark Matsunaga. The second, ‘So You’re Going to Mars’, is fictional advice given by the immigration authorities to people moving from Earth to Mars.

The quality of the computer graphics is mixed. Many of them, which were without doubt absolutely astonishing for the time, now look rather crude and dated as the technology has improved. Others, however, still stand up very well even today. The quality of the computer simulations of the terraforming process can be seen from this image below of what Eos Chasma might look like in 2500 AD.

There are also plenty of illustrations of Mars, rendered using more traditional artistic methods such as painting, including photos of Percival Lowell’s own drawings of what he believed was the planet’s network of canals.

Although the computer tools may have been superseded and improved in the decades since the book’s publication, I think the science, and the social issues Clarke discusses, are still solidly relevant and contemporary. Certainly there is now a popular movement to send humans to the Red Planet at some point in the coming decades, and prospective future colonists have even come forward to volunteer a few years ago. There is, however, a greater awareness of the medical dangers from radiation and microgravity that would affect – and possibly destroy – a mission to Mars. The dream, however, is still there, as shown by the success of the film The Martian a few years ago.

Florence on Terraforming Mars Using Existing Microbes

January 2, 2017

One of the pieces I put up yesterday was on a paper by two scientists in the Journal of the British Interplanetary Society, discussing the possibility of terraforming Mars using genetically engineered microbes. Florence, one of the commenters on this blog, used to be a microbiologist, and was extremely interested in the exploration of Mars and the prospect for finding life there. She commented that there are already anaerobic microbes that can exist in comparable conditions on Earth. She felt that the experiments carried designed to detect life on the Red Planet were very inadequate. She wrote

There appears little need to create GMOs for terraforming. We already have the real deal here on earth. Back 3.6 billion years ago, when first life is thought to have arrived/ developed / etc there wasn’t an oxygen based atmosphere. It was anoxic, and the first organisms (the archeao bacteria) were very sensitive to oxygen, and there are still many that find oxygen toxic. These are still found in many places including the human gut! Some microorganisms developed oxygen tolerance and that allowed them to use new food sources, and they began adding oxygen to the atmosphere. These organisms then used this evolutionary advantage to evolve and diversify. When I studied anaerobic bacteria the main problems were sensitivity to oxygen – very difficult to remove from all materials prepared in the standard lab – and the slow growth rate (making the rapid generation of results for research funding cycles pretty difficult).

http://www.genomenewsnetwork.org/articles/07_03/extremo.shtmlhttp://www.genomenewsnetwork.org/articles/07_03/extremo.shtml

Then there are the organisms that can grow in both aerobic and anaerobic environments. These are the ones that would be useful in terraforming if the aim was to develop a breathable atmosphere for humans and other animals. These live on very basic nutrients of sulphur and iron containing minerals, plus water. I think the “red” planet would be a great place to find these organisms, and vee may not even need to send ours over, but to stimulate the environmental conditions that would allow the planet to terraform itself. I recall the so-called search for life on the early Mars probes left me speechless – they were just totally inappropriate. But that’s can other story! Thank you for reminding me of the whole area of microbial life here and across the solar system! Happy New Year, too!
https://www.ncbi.nlm.nih.gov/pubmed/23354702https://www.ncbi.nlm.nih.gov/pubmed/23354702

The paper discussing the use of GEMOs to terraform Mars did mention that some existing microorganisms had been considered, such as a variety of cyanobacteria.
Looking through the index of papers published in the Proceedings of the Founding Convention of the Mars Society: August 13-16, 1998, edited by Robert and Linda Zubrin, I did find one paper by James M. Graham and Linda E. Graham on terrestrial microbes on Mars. This was ‘Physiological Ecology of Terrestrial Microbes on a Terraformed Mars’, published in the third volume of papers. Unfortunately, I don’t have that volume, and so I really don’t know anything about the paper or its conclusions, just that it exists.

As for the inadequacy of the instruments aboard the Viking probe to detect life on the Red Planet, Dr. Heather Couper and the late Colin Pillinger also believed that they were too limited to disprove the existence of life in that part of the cosmos. Heather Couper is an astronomer, writer and broadcaster, who’s written a series of books on astronomy. A few years ago I heard her talk about life on Mars at the Cheltenham Festival of Science. Before she began speaking, she asked her audience how many of them believed there was life there. Only a few people put their hands up. She asked the same question again at the end of her talk, after she had explained the problems with Viking’s experiments, and the evidence for life. That time the majority of people put their hands up.

Dr. Colin Pillinger, who was a scientist with the Open University, also made a very strong case for life on Mars, life he hoped to find with the Beagle Probe. One of the ways life could be detected was through its waste gases, like methane. The Beagle Probe carried just such a detector, and Dr. Pillinger said, ‘So if a bacterium farts on Mars, we’ll find it.’ He was another speaker at the Cheltenham Festival of Science, and was well worth hearing. Sadly, the Beagle Probe was a disastrous failure. Rather than soft-landing, it crashed on to the Mars surface, and was destroyed.

Despite this, I still have immense respect for the man. He and his team seemed to be fighting a lone battle to send a British probe to explore the issue, and I am deeply impressed by the way he and his fellow scientists were able to mobilise public support, including celebrities like the artist, Damian Hurst. I got the impression that his team were rushed, and it may well have been this that caused the mission’s failure. But I don’t fault the man for trying, and I think he did a grand job in taking on British officialdom and winning a place for the probe aboard the Ariane craft, when the British authorities didn’t appear to be at all interested, at least, at the beginning.

It’s sad that he failed, but he was genuinely inspirational in pushing for the project. I hope that it will not be too long before someone else sends another, better probe to Mars. And I think we need more scientists, and science educators like him, who can pass on their great enthusiasm for their subject.

Two Views of a Partly Terraformed Mars

January 2, 2017

Over the past few days, I’ve been discussing on this blog the possible terraforming of Mars. Way back in the 1990s, the late Arthur C. Clarke published a book of pictures he’d generated on his computer of what Mars would look like during and after the centuries-long process. I’m afraid I cleaned that out years ago. I have, however, managed to find two pictures of a partly terraformed Mars by the artist Michael Carroll, in The Case for Mars: The Plan to Settle the Red Planet and Why We Must, by Robert Zubrin and Richard Wagner (London: Simon and Schuster 1996).

The first shows a group of explorers making their way along a defile or gully.

mars-terraform-1

The second shows a view of the planet from space.

mars-terraform-2

The caption for this reads

Liquid water once coursed over the face of Mars and, given the technological capability of the twenty-first century, it may once again. Several decades of terraforming could transform Mars into a relatively warm and slightly moist planet suitable some day for explorers without space-suits, although breathing gear would still be required. Returning oceans to Mars is actually a possibility for the distant future.

I think Kim Stanley Robinson explored a Mars, which after centuries of terraforming now possessed oceans, in two of his trilogy of books on the Red Planet, Blue Mars and Green Mars.

There are also a series of videos on YouTube by someone, who has used the astronomy programme Celesta, to simulate the terraformation of Venus, the Moon, Mars and Titan.

As for Titan, Stephen Baxter’s SF book of the same name concludes with two astronauts, sent on a mission to Jupiter’s moon, waking up billions of years in the future. The Sun has expanded into a Red giant, supplying this currently icy world with the heat necessary for an Earthlike environment. By this time, however, humanity is extinct and the moon’s current occupants are a race of alien explorers.

British Interplanetary Society Paper on Terraforming Mars with Microorganisms

January 1, 2017

Yesterday I put up a couple of articles on terraforming the various planets of the Solar system, including Mercury, Venus and Earth’s Moon, as well as Mars. There have been a couple of really interesting comments posted to them. Florence, one of the great people, who read this blog, stated that she was a microbiologist. She was very much looking forward to working on microorganisms for Mars, but unfortunately that, and much of the rest of the space programme, vanished.

As well as Carl Sagan’s suggestion in the 1960s that blue-green algae could be used to create a breathable atmosphere and Earthlike environment on Mars, a number of scientists have also suggested using microorganisms to terraform the Red Planet. Twenty years ago the American Astronautical Society published a series of papers, edited by Robert M. Zubrin, about the colonisation of Mars, From Imagination to Reality: Mars Exploration Studies of the Journal of the British Interplanetary Society: Part II: Base Building, Colonization and Terraformation (San Diego: Univelt 1997). This included a paper, ‘Genetic Modification and Selection of Microorganisms for Growth on Mars’ by Julian A. Hiscox and David J. Thomas.

bis-mars-terraforming

The abstract for this paper reads

Genetic engineering has often been suggested as a mechanism for improving the survival prospects of terrestrial microorganisms when seeded on Mars. The survival characteristics that these pioneer microorganisms could be endowed with and a variety of mechanisms by which this can be achieved are discussed, together with an overview of some of the potential hurdles that must be overcome. Also, a number of biologically useful properties for these microorganisms are presented that could facilitate the initial human colonisation and ultimately the planetary engineering of Mars.

After an Introduction, in which they state that the terraformation of Mars could be a two-stage process, with the construction of an Earthlike environment by microorganisms being the first, they then proceed to the following sections:

2. Selection of Bacteria for Mars The Search for a Marsbug, which discusses the suitability of terrestrial microbes for the process, such as the cyanobacterium Chroococcidiops and the extremophiles, which occupy of extreme environments here on Earth;

3. Genetic Engineering – A simple Matter of Cut and Paste;

4. Genetic Modification and Selection;

5. Gene Expression, with subsections on

1) Survival Properties – Tolerance to Peroxides; Osmotic Adaptation; UV Resistance; Tolerance to High Intracellular Acid Concentrations; Endospore Formation;

2) General Properties, with further subsections on photosynthesis, nitrogen fixation, and denitrification;

6. Uses of GEMOS and Some Speculations,

and then finally the conclusion and acknowledgments.

The conclusion reads

The introduction of microorganisms on Mars will greatly facilitate colonisation, both during initial attempts and in establishment of a stable ecosystem, either in enclosed habitats or at the end of ecopoiesis or terraformation. During the initial stages of ecopoiesis climatic conditions on Mars will be limiting for most terrestrial microorganism. By using genetic modification and directed selection under simulated Martian conditions, it may be possible to greatly enhance the survival capability of microorganisms during the alteration of the Martian climate to more clement conditions. Such microorganisms could be used to facilitate any planetary engineering effort. For example, they could be used to release Co2 and N2 from putative carbonate and nitrate deposits.

The genetic alteration of microorganisms will not be so much of a problem of introducing foreign genes into the organism but more a matter of understanding and controlling the regulatory pathways for the expression of such genes. However, such understandings will provide valuable insights into genetics, not only for increasing the productivity of microorganisms on Mars but possibly for Earth.

I’ve got very strong reservations about genetic engineering and modification, but here there is a strong case if it can be used to bring life to a sterile world. Assuming, that is, that Mars does not already possess life. In a way, the article’s ironic. Over a century ago, H.G. Wells had a germ, the common cold, destroy the invading Martians in his book, The War of the Worlds. Now terrestrial scientists are discussing using such organisms as ways to creating a living environment on the Red Planet.

Terraforming the Moon by Comet

December 31, 2016

In my last blog post, I discussed the passed in David A. Hardy’s book, Atlas of the Solar System, in which he described the possible methods which might be used in the future to transform Mercury, Venus, the Moon and Mars into worlds, where humans and other creatures could live in the open, instead of the enclosed environments they need now to protect them from the harsh conditions of space. In the case of Venus, comets would be used to increase the planet’s rotation from its current 224 Earth days to a terrestrial day, and give the planet water. Looking through YouTube, I found this video by Fraser Cain, in which he talks about using the same method to terraform the Moon, as suggested by the space scientist and SF writer, Gregory Benford. This is part of a series of videos on space and space colonisation. At the beginning of the video, he mentions a previous one about the terraforming of Venus.

The explanatory section on the YouTube page provides this transcript of his talk.

In our episode about terraforming Venus, we talked about cooling the planet with a giant sunshade, and then hand-wavingly bind up all that carbon dioxide.

We did the same with Mars, filling the atmosphere with greenhouse gasses to warm it up, and releasing the planet’s vast stores of C02 to thicken the atmosphere. Then just crash in a few comets worth of water and upgrade them to to a 3 star resort.

We’re pitching this as a new series on the Discovery Network, called “Flip My Planet – Canada”.

Now let’s turn our imagination towards another rockball that is really more of a fixer-upper: The Moon. I know, you never even thought of the Moon as a place that we could possibly terra-renovate. Go ahead and imagine with me all the possibilities of a verdant green and blue little world hanging in the night sky. Doesn’t that sound great?

So, what does it take? Do we tear it down and just use the orbital lot space? Should we raise it up and lay a new foundation? Or could we get away with a few coats of paint and adding an atrium on the backside?

Fortunately for me, scientist and sci-fi author Gregory “Planetary Makeover” Benford has already done the math.

Let’s take a look at what we’d need to get the Moon habitable. For starters, the fact that the Moon is so close to Earth is a huge advantage. This is like living on the same block as a Home Depot, and we won’t have to travel far to get supplies and equipment to and from our project.

We’re going to need an atmosphere thick enough to breathe and trap in the Sun’s heat. This takes wild comet capture and harvest, tear them apart and smash them into the Moon.

Benford notes that you probably want be careful not to let an entire comet collide with the Moon because it might spray your primary investment home with debris and do a little damage to the resale value, or potentially annoy your tenants.

This could get bad enough that we’d have to terraform Earth to get it livable again, and you’d need to bring in Mike Holmes to publicly shame us and put our primary residence back in order.

After you’d splattered a few comets on the Moon, it would have an atmosphere almost immediately. The transfer of momentum from the comet chunks would get the Moon rotating more rapidly.

If you invest a little more in your planning stage, you could get the Moon spinning once every 24 hours, and even tilt its axis to get seasons. Benford estimates that we’d need 100 Halley’s mass comets to get the job done. This might sound like a pretty tall order, but it’s tiny compared to number of comets we’d need for your Mars or Venus real estate scheme.

The maintenance and upkeep isn’t going to be without its challenges. Low gravity on the Moon means that it can’t hold onto its atmosphere for longer than a few thousand years.

Once you got the process going, you’d need to be constantly replenishing our your orbital cottage with fresh atmosphere. Fortunately, we’ve got a whole Solar System’s worth of ice to exploit.

The benefits of a terraformed summer home on the Moon are numerous. For example, if the Moon had an atmosphere as thick as the Earth’s, you could strap on a pair of wings and fly around in the 1/6th gravity.

The enormous gravity of the Earth would pull the Moon’s oceans around the planet with 20 meter tides. You could surf the tide for kilometers as it washes across the surface in a miniature version of the shallow water scene in Interstellar.

This might be the greatest sponsorship opportunity for GoPro of all time. Look out Kiteboarding, you’re about to get more extreme.

Everyone always wants to talk about terraforming Venus or Mars. Let them be, that’s too much work. The next time someone brings it up at D&D night, you can blow their minds with your well crafted argument on why we want to start with the Moon.

I can remember David A. Hardy illustrating a few articles on future human habitats on the Moon, showing people enjoying themselves flying around and swimming at just such a lunar resort. One of these was for an article in the sadly short-lived space and astronomy magazine, New Voyager. The resort was in an enclosed dome, rather than on the terraformed surface. The Scots space scientist, Duncan Lunan, in his book, Man and the Planets, also suggested that to prevent the Moon’s atmosphere from being lost to space, the whole planet should be contained with a kind of giant inflatable bubble. This is waaaay beyond modern technological capability, but not, perhaps, that of the future. So perhaps at some point in the far future, the Moon may also join Earth as a living, habitable world.

David A. Hardy on Terraforming the Solar System

December 31, 2016

As well as colonising the other planets in the solar system with self-contained, sealed environments to protect their future human inhabitants, it may also one day be possible to terraform them. This means transforming them from their currently hostile conditions to an Earthlike environment. At the moment, the planet considered most suitable for terraforming is Mars, because of all the planets it seems to present the least obstacles to this form of planetary engineering. I can remember reading a piece in the Sunday Express way back in the 1980s, which discussed James Lovelock’s suggestions for creating an earthlike atmosphere on the Red Planet. Lovelock is the creator of the Gaia hypothesis, the theory that Earth’s biosphere acts like a gigantic, self-regulating organism. This became a favourite of several of the New Age neo-pagan religions in the 1990s, where it was incorporated into worship of the Earth Mother. Lovelock believed that while nuclear weapons were a serious danger to all life on Earth, they could be used creatively on Mars to produce an environment that would support life. Mars has large amounts of carbon dioxide locked up at its polar regions in the form of dry ice. he believed that this could be melted using nuclear missiles. Specially targeted nuclear explosions would cover the polar regions with an insulating layer of soil. This would keep the heat in, which is currently radiated back into space, reflected by the white ice. The rise in temperature would cause the dry ice to sublimate into carbon dioxide gas. This would then start a greenhouse effect, which would see more carbon dioxide and other gases released into the Martian atmosphere. This would eventually create an environment, where the atmosphere was thick enough for humans to be able to move around without space suits. They would, however, still need oxygen masks and tanks to be able to breathe. Lovelock was extremely optimistic about how many weapons would be needed. He believed that you’d only need four, if I remember correctly.

Lovelock’s ideas are wrong, but other scientists and Science Fiction writers have also suggested ways of transforming the Red Planet into a place where life can thrive. Back in the 1990s, Kim Stanley Robinson wrote a trilogy of books set on a Mars that was being colonised and terraformed by humanity, beginning with Red Mars. The veteran SF writer, Arthur C. Clarke, also produced a book in which he used to a computer programme to show what Mars may look like as it’s being terraformed. Over hundreds, perhaps even a thousand years, rivers, seas and oceans develop and green spreads over its land surface as vegetation begins growing on its previously barren surface.

David A. Hardy, the space artist, who has illustrated a number of books on space, including several with the late Patrick Moore, also described the various ways in which the Moon, as well as Mercury, Venus and Mars, could be terraformed in his 1981 book, Atlas of the Solar System (Kingswood, Surrey: World’s Work). He writes

Taking the concept of manned bases on other planets still further, there is the staggering possibility of ‘planetary engineering’ or terraforming – a term coined in 1942 by science fiction writer Jack Williamson. The idea is simply to make other worlds habitable by humans. An early suggestion, in 1961, by Carl Sagan was to ‘seed’ the atmosphere of Venus with blue-green algae, converting the carbon dioxide into oxygen and at the same time reducing the pressure and temperature (by eliminating the greenhouse effect). The upper clouds would condense and rain would fall, forming oceans.

A more recent alternative, now that we know how hostile Venus really is, is to ferry in ice asteroids 15 km or so in diameter, put them into orbit around Venus and aim them, using rocket jets, at a specific spot on the surface. Each crashes at nearly 100 km/s, at such an angle that Venus’ rotation is increased until a 24-hour day is approached, while at the same time water is provided as the ice melts. Then the atmosphere is seeded with blue-green algae.

The same could even be done with the Moon: once given a breathable atmosphere by baking oxygen out of the rocks with giant parabolic mirrors, it would remain for thousands of years, even if not replenished. The time factor for the operation is remarkably short. Mercury would need to be shielded from the Sun by a ‘parasol’ of rocky particles put up by mass-driver, or by a man-made ring. Mars would need to be warmed up, perhaps by reflecting sunlight on to the poles with huge, thin metal-foil mirrors, increasing the energy-flow at the poles by 20 per cent. or we could spread dark material from its carbonaceous moons on them with a mass-driver. Rich not only in carbon but in oxygen, nitrogen and hydrogen, this is excellent raw material for fertiliser. One the atmosphere was thickened, the greenhouse effect and carefully chosen plant life should do the rest. (pp. 86-7).

The process of transforming these planets into habitable worlds would take quite a long time – decades, if not centuries, and at present it is the stuff of science fiction. But I hope that there will be a time when we can move out from Earth to create new homes for life and civilisation on these worlds.